Exploration | 微观世界的奇妙探索之旅(二)
广东以色列理工学院电镜中心再添一把“利器”——聚焦离子/电子双束显微镜。
什么是聚焦离子/电子双束显微镜?它如何服务于科研工作?它还有什么隐藏的技能等着我们一探究竟?
下面,就请跟随广以君来看看~
大家是否见过在硅片上刻蚀的广以校徽校训长什么样?一般来说,人眼能分辨的尺寸是0.1毫米,我们日常见到的校徽尺寸大多是几到几十厘米,但通过今天介绍的聚焦离子/电子双束显微镜(Focused Ion/Electron DualBeam Microscope - FIB)对材料进行特定形状的微纳加工,可以轻松制备出几十微米甚至更小尺寸的校徽图案。
下图即为用FIB电镜在硅片上刻蚀广以校徽校训图案的形貌。
直径为58微米的广以校徽
长180微米、宽80微米的广以校徽校训
*1厘米=10毫米=10000微米
广以电镜中心配置的这台Helios 5 UC双束电镜(FIB-SEM)可大有来头。它结合了聚焦离子束系统和具有单色器技术的电子束系统,除自带的多种气体沉积/刻蚀系统、纳米机械手、高精度的五轴电动工作台、样品导航、离子清洗仪及全自动校准功能外,还配备了多种探测器附件。这台电镜可快速、简便、精确的完成高质量的透射电镜样品制备和微纳加工等,同时辅以不同模式和需求下的电子成像。
名称:聚焦离子/电子双束显微镜
型号:Helios 5 UC
镜筒内背散射电子探测器
镜像背散射电子探测器
穿过透镜二次电子/背散射电子探测器
Everhart-Thomley二次电子探测器
样品室二次电子和二次离子探测器
定向背散射电子探测器
扫描透射电子模式探测器
能谱仪
电子背散射衍射探测器
透射电镜样品制备
微纳加工
形貌观察
成分及晶体结构分析
三维重构
先进的FIB-SEM双束系统和精准的样品导航功能,可快速高质量的制备材料特定部位的透射电镜样品。
高通量的离子束系统,不仅可在高电压下对样品进行铣削,还可利用低能离子最大限度的减少对样品表面的损伤。
配备最先进的软件和图案引擎,能够快速、精准地铣削和沉积临界尺寸小于十纳米的复杂结构。
可提供高质量、全自动、多模态的三维数据采集,实现材料的三维重构。
具有先进单色器技术的电子束系统及多探测器设计,可满足不同需求的高分辨电子成像。
广泛应用于材料科学、半导体行业和化工工业等众多领域固体材料的制备、表征及分析。
透射电镜样品制备(以硅片为例,流程如下)
沉积保护层
上下两侧刻槽
切断薄片试样与基体左侧和底部的连接
将机械手针尖与薄片试样左侧焊接
切断薄片试样右侧与基体的连接并取出
将薄片试样焊接在梳齿上
阶梯状减薄后的薄片试样(俯视图)
低能量抛光后的薄片试样(正视图)
形貌表征
钛铝合金中的α₂、β和γ相及少量的α₂+γ板条结构
不同径粒的锡球
成分分析
Ti-43.5Al-4Nb-1Mo合金的元素分布
晶体结构分析
钛铝合金晶粒的取向(上)和相分布(下)
广东以色列理工学院拥有世界一流的学术环境和科研团队。广以材料学院电镜中心(Electron Microscopy Center-EMC)是一个跨领域、跨学科,集分析测试服务、基础研究和应用研究为一体的综合性开放平台。电镜中心以材料的微观表征为切入点,用多种电子显微方法研究不同材料的微观结构和化学成分(可至原子水平),并建立微观结构、化学成分和材料性能之间的内秉关系,为材料性能优化和进一步应用提供基本的科学支撑。
延伸阅读:Exploration | 微观世界的奇妙探索之旅(一)
The Electron Microscopy Center of GTIIT has added another equipment- Focused Ion/Electron DualBeam Microscope.
How can Focused Ion/Electron DualBeam Microscope serve scientific research? What other functions does it have?
Let's learn more about this Helios 5 UC dualbeam electron microscope.
Have you ever seen the GTIIT logo etched on a silicon chip? Generally speaking, the size that the human eyes can distinguish is 0.1mm, and the size of school badge we can see in the daily life is usually ranged from a few centimeters to dozens of centimeters.
However, the Focused Ion/Electron DualBeam Microscope - FIB, which is designed to process materials in a specific shape, makes it easy to produce school logo tens of micrometers or even smaller. The following figures show the morphology of the school logo etched on the silicon chip by using Focused Ion/Electron DualBeam Microscope.
GTIIT badge with 58μm in diameter
GTIIT logo with 180μm in length, 80μm in width
*1cm=10mm=10000μm
Equipment Introduction
Name:Focused Ion/Electron DualBeam Microscope
Model:Helios 5 UC
In-Column Backscattered Electrons Detector (ICD)
Mirror Backscattered Electrons Detector (MD)
Through-the-Lens Secondary / Backscattered Electrons Detector (TLD)
Everhart-Thomley Secondary Electrons Detector (ETD)
In-Chamber Electron and Ion Detector (ICE)
Directional Backscattered Electron Detector (DBS)
Scanning Transmission Electron Mode Detector (STEM)
X-ray Energy- dispersive Spectrometer (EDS)
Electron Backscatter Diffraction Detector (EBSD)
TEM sample preparation
Micro-nano processing
Morphology observation
Compositional, microstructural and crystallographic analysis
3D reconstruction
Advanced FIB-SEM dualbeam system and precise sample navigation function enable fast and high-quality TEM sample preparation at specific sites of the material.
The high-throughput ion column can not only mill the samples under high voltage, but also polish the samples with low energy ions to minimize surface damage on the sample.
Equipped with the most advanced software and pattern engine, it is capable of fast, accurate and precise milling and deposition of complex structures with critical dimensions of less than 10nm.
It can provide the highest-quality, fully automated and multi-modal 3D data collection to realize the 3D reconstruction.
The electron column with monochromator technology and multi-detectors can meet high-resolution imaging for different requirements.
It is widely used in the preparation, characterization and analysis of solid materials in many fields such as material science, semiconductor industry and chemical industry.
TEM sample preparation (take silicon wafer as an example, the process is as follows)
Deposit the protective layer
Cut the upper and downer sides
Cut off the left and bottom of the lamellar
Weld the nanomanipulator to lamellar
Cut off the right side of the lamellar and take it out
Weld the lamellar onto grid
Stepped thinning the lamellar
Polish the lamellar
Morphology characterization
α₂、β、γ phases and a small amount of α₂+γ lamellar structure in TiAl alloy
Tin balls in various size
Compositional analysis
Element distributions in Ti-43.5Al-4Nb-1Mo alloy
Microstructual and crystallographic analysis
Grain orientations (up) and phase distributions (down) of TiAl alloy
GTIIT Electron Microscopy Center (EMC)
GTIIT has world-class academic environment and research teams. The Electron Microscopy Center (EMC) of GTIIT is an open platform that integrates analytical testing services, fundamental research and applied research. EMC takes the micro characterization of materials as the entry point, studies the microstructure and chemical composition of different materials (up to the atomic level) by a variety of electron microscopy methods, and establishes the internal relationship among the microstructure, chemical composition and material performance, providing basic scientific support for material performance optimization and further application.
Related reading: Exploration | 微观世界的奇妙探索之旅(一)
文/图:GTIIT电镜中心、GTIIT传媒与公共事务部
Text/Photos: GTIIT Electron Microscopy Center, GTIIT News & Public Affairs